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Figure 1: Optimizing the aesthetics of the original photograph in (a) by our approach leads to the new image composition shown in (c). (b)
shows the cropping result of the approach of [Santella et al. 2006]. The aesthetic scores are shown in (d). Our result in (c) obtains higher
aesthetic score than (a). RT(rule of thirds), DA(diagonal), VB(visual balance), and SZ(region size) are components of the objective function.

Abstract

Aesthetic images evoke an emotional response that transcends mere
visual appreciation. In this work we develop a novel computational
means for evaluating the composition aesthetics of a given im-
age based on measuring several well-grounded composition guide-
lines. A compound operator of crop-and-retarget is employed to
change the relative position of salient regions in the image and thus
to modify the composition aesthetics of the image. We propose
an optimization method for automatically producing a maximally-
aesthetic version of the input image. We validate the performance
of the method and show its effectiveness in a variety of experiments.

Keywords: Computational aesthetics, image retargeting, image
resizing, composition, optimization

1 Introduction

Humans seek to achieve aesthetics in art. This goal is elusive since
there is little consensus as to what makes one piece of art more aes-
thetic than another. Indeed, the judgment of aesthetics is subjective
and involves sentiments and personal taste [Martinez and Block
1998]. Despite the challenges, a new field called Computational
Aesthetics has emerged. This area of research is concerned with
the study of computational methods for predicting the emotional
response to a piece of art, and in developing methods for eliciting
and enhancing such impressions [Peters 2007; Rivotti et al. 2007].

In this work, we focus on the aesthetics properties of image com-
position and employ rules that are well-known in the photography
community. Such rules are routinely taught in professional courses
and text-books [Grill and Scanlon 1990; Krages 2005] as guidelines
likely to increase the aesthetic appreciation of photographs.

Composition rules tell the photographer various aspects that he or
she should consider when shooting a photograph. After the photo-
graph is taken there is little that can be done to improve the compo-
sition of the picture, without laborious digital editing. Using com-
mercial tools like Photoshop, one can crop the image, extract fore-
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ground objects and paste them back into the image. Photo touch-up
is a routine for professional graphic designers, but not for the aver-
age amateur photographer.

Automating the process of aesthetic image adjustment requires the
development of a computational aesthetic score which represents
the expected composition quality of a picture. We develop and for-
malize such a score based on a set of primary composition guide-
lines, including rule of thirds, diagonal dominance, visual balance,
and size region. As far as we know, our work is the first attempt to
incorporate the guidelines of diagonal dominance, visual balance,
and size region in an automatic aesthetic score. As a result, tools
for automatic photo touch-up may be defined as search problems.

In order to modify the composition of a given photograph, we em-
ploy a compound operator of crop-and-retarget. The cropping op-
erator selects a subset of the image objects, then the retargeting
operator adjusts their relative locations. The parameters of this dual
operator are the coordinates of the crop window and the amount
of inflation or deflation the image undergoes during the retarget-
ing process. By searching for a combination of parameters that
produces the image with the maximal aesthetic score, we generate
an output image that is an improved version of the original one,
and enable everyday photographers to create new photos with good
composition from their own previously taken photos.

The specific contributions of our work include:

• identifying a set of composition rules, and implementing them
computationally to allow a quantitative evaluation;

• considering retargeting as an operator to change the relative
position of salient regions in the image;

• facilitating an automatic image editing tool that enhances the
aesthetics of a photograph, and everyday user’s photography
experience.

2 Background

Various techniques have been developed to change the content of
images in the sense of image composition and retargeting.



2.1 Image composition and aesthetics

Composition is the arrangement of visual elements in the image
frame, which is an essential aspect in the creation of a vast vari-
ety of artistic work. In their daily work, professional photographers
bring to bear a wealth of photo composition knowledge and tech-
niques [Martinez and Block 1998]. No absolute rules exist that en-
sure good composition in every photograph; rather, there are only
some heuristic principles that provide a means of achieving an eye-
pleasing composition when applied properly. Some of these princi-
ples include: rule of thirds, shapes and lines, amputation avoidance,
visual balance, and diagonal dominance [Krages 2005].

There has been several attempts to allow automatic images crop-
ping or capturing based on the visual quality of the output. Simple
techniques from traditional artistic composition have been applied
to the artistic rendering of interactive 3D scenes [Kowalski et al.
2001]. The work of Suh et al. [2003] develop a set of fully au-
tomated image cropping techniques using a visual salience model
based on low-level contrast measures [Itti et al. 1998] and an image-
based face detection system. [Gooch et al. 2001] uses the rules of
thirds and fifths to place silhouette edges of 3D models in view se-
lection. [Byers et al. 2004] positions the features of interest in an
automatic robot camera using the rule of thirds. [Lok et al. 2004]
considers some balance heuristic to arrange images and text objects
in a window. Zhang et al. [2005] propose 14 templates that utilize
composition rules to crop photos by using face detection results.
Santella et al. [2006] present an interactive method based on eye
tracking for cropping photographs. Instead of improving aesthet-
ics, Wang and Cohen [2006] propose an algorithm for composing
foreground elements onto a new background by integrating mat-
ting and compositing into a single optimization process. Recently,
a quality classifier that assesses the composition quality of images
is statistically built using large photo collections available on web-
sites [Nishiyama et al. 2009]. The cropped region with the highest
quality score is then found by applying the quality classifier to the
cropping candidates.

Other attempts to improve image aesthetics modify aspects other
than image composition. For example, Cohen-Or et al. [2006],
seek to enhance the harmony among the colors of a given image;
Leyvand et al. [Leyvand et al. 2008] enhance the attractiveness of
digital faces based on a training set.

2.2 Image retargeting

Image retargeting deals with displaying images on small screens
such as cell phone displays. The goal of retargeting is to pro-
vide effective small images by preserving the recognizability of
important image features during downsizing. Please refer [Shamir
and Sorkine 2009] for a recent insightful survey on the problem of
content-aware retargeting of images or videos.

Setlur et al. [2005] segment an image into regions and identifies im-
portant regions. Then, important regions are cut and pasted on the
resized background, where missing background regions are filled
using inpainting. In our work, we extract salient regions similartly,
and use them as primitives in the aesthetic objective function.

The relative distance and distributions of salient objects around the
image play a crucial rule in its aesthetics. We therefore employ non-
homogenous warping techniques to alter the compositions of the
given images. One of the first systems to allow such warpings sub-
ject to region-preserving constraints was by Gal et al. [2006], who
present a mapping that preserves the shape of important features by
constraining their deformation to be a similarity transformation.

Avidan and Shamir [2007] propose a content-aware approach where

a seam-carving operator changes the size of an image by gracefully
carving-out pixels in unimportant parts of the image. The seam-
carving operator is extended to video retargeting and media retar-
geting [Rubinstein et al. 2008; Rubinstein et al. 2009]. The work of
Wolf et al. [2007] presents a retargeting solution for video, in which
the warping is computed as a solution for a linear set of equations.
Wang et al. [2008] propose an optimized scale-and-stretch approach
for resizing images. Recently, some patch based methods are pro-
posed to edit images by allowing modifications of the relative posi-
tion of objects [Cho et al. 2008; Simakov et al. 2008; Barnes et al.
2009].

Restricted to still images, the work of Wolf et al. proposes an al-
ternative to the work of Avidan and Shamir. While both methods
are efficient and effective, we choose to use the method of Wolf et
al. since it seems to produce less artifacts due to its continuous na-
ture. Similarly to Avidan and Shamir’s Seam Carving method, the
method of Wolf et al. [2007] takes as input a saliency map F and a
new image width Wnew. The treatment of vertical warping is done
independently and in an analog manner. The method then solves
a system of equations where the new location xi,j of each pixel
(i, j) along the x axis is an unknown. The location of the leftmost
column of pixels in the new image is set to be 1, and the rightmost
column is constrained to beWnew. Two types of equations are used
to constrain the remaining pixels:

Fi,j(xi,j − xi−1,j) = Fi,j (1)
W (xi,j − xi,j+1) = 0 (2)

The first type of equations encourages pixels to be warped at a dis-
tance of one pixel apart from their neighbors to the left, and the
second type encourages pixels to be warped by the same amount of
their neighboring pixel below. The system of equations is solved in
a least squares manner, and according to the saliency map F and
the weight W , some of the constraints get priority over others. In
particular, salient pixels keep their space, while less salient pixels
are “squished”. The end result is a warping which is smooth, and
which more often than not produces images that seem natural.

3 Overview

Increasing the aesthetics of a given image is a twofold problem:
how to modify the image and how to measure its new aesthetics.
The answer to the latter question is the core of our method. In
Section 4 we describe the specific image properties we measure,
and how these are computed algorithmically.

As for the first problem, our method employs a compound operator
as means to modify a given image: it non-homogeneously retargets
a cropped part of the image into a target frame having different
dimensions than the original image. Then the results are remapped
homogeneously to the dimensions of the original image. This multi-
stage operator modifies the proportion, the interrelation among the
geometric entities, and the composition of the image.

The parameters of the above recomposition operator constitute a
6D space. The cropping frame has four degrees of freedom and the
target frame two. To reduce the dimensionality of the search space,
we limit the crop and target frames to have the same aspect-ratio
as the input image, reducing the number of parameters to four: x
and y position of the cropping frame, its width, and the amount of
retargeting, see Figure 2.

To further reduce the search space, we limit the size of the crop
and target frames to be no less than 75% of the original frame size.
In Section 5 we show that this reduced search space is effective
enough to improve the aesthetics of a given image without causing
a dramatic change to the semantics of the original image.



Figure 2: Overview of our aesthetic retargeting method. (a) The
original image with different cropping frames; (b) The red cropping
frame in (a) is retargeted into three different frames of the same as-
pect ratio; (c) The retargeted images in (b) are uniformly scaled to
frames of the original sizes, in order to allow a direct comparison
between images. Note that the sizes of salient objects and the dis-
tances between them are changed by the retargeting operator. The
topmost image in (c) displays the most aesthetic result found.

4 Aesthetic measurement

Our approach is based on searching, in a low-dimensional param-
eter space, for the most aesthetic image. This is made possible
through a computational model of image aesthetics, which bridges
between low- and mid-level image primitives and high-level pro-
fessional guidelines that are often followed.

4.1 Basic aesthetic guidelines

There are various guidelines for shooting well-composed pho-
tographs. We consider a limited set of such guidelines that are
well-defined and prominent in many aesthetic images.

Rule of thirds The most familiar photo composition guideline is
the rule of thirds [Grill and Scanlon 1990; Krages 2005]. The
rule considers the image to be divided into 9 equal parts by two
equally spaced horizontal lines and two such vertical lines, as in
Figure 3(a). The four intersections formed by these lines are re-
ferred to as “power points”, and photographers are encouraged to
place the main subjects around these points, and not, for example,
at the center of the image. Also by this composition-rule, strong
vertical and horizontal components or lines in the image should be
aligned with those lines. Figure 3(a),(b) demonstrate two aesthetic
photographs that comply with this rule.

Diagonal dominance In addition to the lines that mark the
thirds, the diagonals of the image are also aesthetically signifi-
cant. A salient diagonal element creates a dynamic emphasizing

Figure 3: Basic composition guidelines and examples. (a) the cat
object is located at one of the “power points”, the thirds lines are
overlayed for illustration; (b) the horizon is located at the thirds
line; (c) a dominant diagonal component; (d) a balanced image:
objects are evenly spread around the center.

effect [Grill and Scanlon 1990]. Indeed, one of the most common
and effective uses for the diagonal is as a leading line – a line that
causes the eyes of the viewers to fixate on the subjects along it.
Figure 3(c) shows one such example.

Visual balance The concept of balance is a crucial component to
the harmony of an image-composition [Krages 2005]. In a visually
balanced image, the visually salient objects are distributed evenly
around the center Figure 3(d). Similarly to a balanced weighing
scale, when balanced, the center of the “visual mass” is nearby the
center of the image, where this mass-analog takes into account both
the area and the degree of saliency of visually salient regions.

4.2 Image pre-processing

The aesthetic score that we assign to an image is based on an analy-
sis of its spatial structure and the distributions of salient regions and
prominent lines in the image. The detection of these salient regions
is done through the use of conventional algorithms.

Detecting salient regions The salient regions are detected in
a similar manner to what was done in the retargeting system of
Setlur et al. [2005], where some of the underlying image segmen-
tation algorithms were replaced. First, we segment the image to
homogenous patches, using an efficient graph-based segmentation
technique [Felzenszwalb and Huttenlocher 2004]. We then assign
a saliency value to each image-pixel based on a weighted combina-
tion of a low-level saliency score of Itti et al. [1998] and a multi-
view face-detector [Li et al. 2002]. The combined saliency score is
normalized to be between 0 and 1 as in Wolf et al. [2007], and is
assigned for each patch by averaging the saliency of the pixels that
it covers. Salient patches are then expanded using a greedy algo-
rithm [Setlur et al. 2005] by incorporating nearby patches that share
similar color histograms to produce larger salient regions.

Detection of prominent lines Our line detector follows the steps
of many similar algorithms. First, all the line segments along the
region boundaries in the segmentation result are collected. The
boundaries are split by fitting a sequence of straight line segments.



Figure 4: Detection of salient regions and prominent lines in im-
ages. The red line has higher saliency value than the green and
blue ones. The darker the regions are, the larger the salience value
are.

Then, out of the infinite straight lines that contain the line segments,
the one straight line with the largest support is selected. This most
supported line is refined based on the participating segments, and
trimmed according to the support. The supporting segments are
removed, and the process repeats.

In addition to the line detector, we also fit lines to elongated salient
regions that may exist in the image. For each detected salient re-
gions Si in the image, we examine the covariance matrix of the
coordinates of all its pixels. If the ratio of the first and the second
eigenvalue of this 2× 2 matrix is larger than a threshold (θr = 3),
we fit a line segment to the pixels of the region Si. This line seg-
ment is added to the list of detected lines, and all pixels from Si

that lie on this segment are considered its support.

Each detected line L is assigned a saliency value I(L) = (s1 +
s2+ s3)/3, where s1 is the total length of the projections of all line
segments that support L, s2 is proportional to the length of L, s3
is the median value of the norm of the gradient (computed by the
Sobel operator) of the pixels along the line L, and all three values
are normalized to be no more than one. The higher the value of
I(L) is, the more important the prominent line L is in the image.
Those with very low saliency values are discarded. Figure 4 depicts
examples of salient regions and prominent line detections.

4.3 Aesthetic measurement computation

Given the salient regions, prominent lines, and the computed
saliency map, we define a score that evaluate the aesthetics of the
image based on the four above-mentioned criteria.

The symbols used in our paper are listed in Table 1. The set X of
approximately diagonal lines contains the indices of all lines that
form a similar angle with the horizon or the vertical as either Q1

or Q2 (we use a threshold of 10 degrees). X denotes the set of all
other lines. I(Si) and I(Li) are explained in Section 4.2.

The normalized Manhattan distance dM is used to measure dis-
tances between 2D points in our system. It is defined as
dM ((x1, y1), (x2, y2)) = |x1 − x2| /w + |y1 − y2| /h, where
dL(L,M), the distance measure between two line segments L and
M , is defined as the average dM distance between all points on

Symbol Meaning
w, h The width and height of the image
C Center of the image frame
Ri, i = 1, 2, 3, 4 Four third lines of the frame
Gi, i = 1, 2, 3, 4 Four power points of the frame
Q1, Q2 Two diagonal lines of the frame
Si, i = 1, 2, · · · , n Salient regions detected in the image
C(Si), A(Si), I(Si) Center, area and saliency value of region Si

r(Si) Region size – area ratio of Si with respect to the image
M(Si) = A(Si)I(Si) “Mass” of salient region Si

Li, i = 1, 2, · · · ,m Prominent lines detected in the image
X Indices of approximately diagonal image line
X Indices of non-diagonal lines
I(Li) Saliency value of prominent line Li

dM Normalized Manhattan distance
dLM Mean points on line distance to line

Table 1: Symbols used in the paper.

the segment L and the closest points on M . Since the Manhattan
distance is used, the closest point tends to the horizonal or vertical
projection, and a closed form formula is easily obtained.

Rule of thirds (RT) The score of this rule has two parts:

ERT = γpointEpoint + γlineEline (3)

where the point scoreEpoint measures how close the salient regions
lie to the power points, Eline measures how close the prominent
lines lie to the third lines, γpoint, γline are weights.

The point score of all salient regions is calculated as:

Epoint =
1∑

i
M(Si)

∑
i
M(Si)e

−D
2(Si)

2σ1 (4)

where D(Si) = min
j=1,2,3,4

dM (C(Si), Gj) is the minimal distance

from the subject center to the four power pointsGj , and σ1 = 0.17.

The line score is calculated as:

Eline =
1∑

i∈X I(Li)

∑
i∈X

I(Li)e
−
D2
R

(Li)

2σ2 (5)

where DR(Li) = min
j=1,2,3,4

dL(Li, Rj) is the minimum line dis-

tance between Li and the third lines, and σ2 = 0.17.

In our experience the line based rule of thirds is a better aesthetic
predictor than its point-based counterpart and we set the weights in
Eq. 3 above as γpoint =

1
3
, γline = 2

3
.

Diagonal dominance (DA) The diagonal dominance score is com-
puted similarly to the line based rule of thirds above:

EDA =
1∑

i∈X I(Li)

∑
i∈X

I(Li)e
−
D2
Q

(Li)

2σ2 (6)

where DQ(Li) = min(dL(Li, Q1), dL(Li, Q2)).

Visual balance (VB) An arrangement is considered balanced if the
“center of mass” which incorporates all salient regions is nearby the
image center C. The visual balance score is therefore (σ3 = 0.2):

EV B = e
−
d2
VB
2σ3 (7)

where dV B = dM

(
C, 1∑

i
M(Si)

∑
i
M(Si)C(Si)

)
.



Figure 5: Salient-regions sizes. (a) All the cropping frames have
the same maximal scores of Ea if the house object is placed on the
power-points of the frames. (b) The histogram of the sizes of salient
regions in a versatile set of over 200 professional images.

Aesthetic score function (RZ) The aesthetic score function is de-
fined as a combination of the above aesthetic measurement scores:

Ea =
ωRTERT + ωDAEDA + ωV BEV B

ωRT + ωDA + ωV B
(8)

where ωRT = 1 and ωV B = 0.3 are fixed weights. ωDA is 1 if
there are detected diagonal lines in the image, zero otherwise.

Salient-regions sizes While combining the three aesthetic guide-
lines is superior to using just one rule (e.g., the rule of thirds), it
turns out that this combined score is not restrictive enough. Con-
sidering a simple example that contains only one salient object,
this object can be placed on the power-points of the image (rule
of thirds) at any scale, see Figure 5(a). That is, there are many
cropping frames that have equal highest scores. We now introduce
the region size score that plays an important rule in stabilizing the
optimization problem by eliminating much of this freedom.

The region size score’s main function is to determine the most visu-
ally appealing scale. It is based on an observation that region sizes
in professional photographs are distributed unevenly. Refer to Fig-
ure 5(b), which shows the histogram of the sizes of automatically
detected salient regions in a database of more than 200 professional
images we collected for this study. Although the images were taken
from various sources, and the set of images is very diverse, the un-
derlying distribution is three-modal, and has three dominant peaks
that correspond to small regions, medium sized regions, and large
regions. In our search for the most pleasing retargeted image, we
encourage region of sizes that adhere to this distribution.

Let r(Si) be the fraction of the image size Si captures. The sizes
of salient regions in aesthetic images are mostly distributed around
the values: r1 = 0.1, r2 = 0.56, and r3 = 0.82, corresponding to
small, medium and large regions. The size score encourages regions
to distribute similarly:

ESZ =
∑

i
max

j=1,2,3
e
−

(r(Si)−rj)
2

2τj (9)

where τ1 = 0.07, τ2 = 0.2, τ3 = 0.16 were evaluated by fitting a
mixture of Gaussians to the histogram of Figure 5(b).

Combined aesthetic score function The combined score function
is defined as a combination of Ea and ESZ :

E = (1− ωSZ)Ea + ωSZESZ (10)

where ωSZ = 0.08. All the weights used in the score function are
chosen empirically on a separate set of images, and are fixed for all
experiments.

Image Sum RT DA VB SZ
(a) 0.85 0.62 0.00 0.10 0.13
(b) 0.86 0.64 0.00 0.09 0.13
(c) 0.90 0.32 0.36 0.12 0.10
(d) 0.93 0.61 0.00 0.17 0.13

Table 2: The aesthetic scores for the images in Figure 3.

Figure 6: The change in the objective function as the crop window
moves from left to right in the image of Figure 1(a). The x-axis
depicts the shift in the window location, and the y-axis the resulting
score. For this visualization, the y coordinate and the width of the
cropping window are fixed, as is the amount of retargeting.

We use our aesthetic score function to calculate the scores of the
images in Figure 3. The scores are shown in Table 2. Here, and in
the diagrams throughout this paper, the values RT(rule of thirds),
DA(diagonal dominance), VB(visual balance) and SZ(region size)
correspond to the energy functions (ERT , EDA, EV B and ESZ )
weighed as in Eq. 10.

4.4 Optimization

The cropping frames in the original image are searched over a 3D
space which consists of the location (x, y) and the width w of
the composition rectangle, keeping the aspect ratio of the origi-
nal image. Then, the cropping frames are retargeted into the tar-
get frames by the non-homogenous warping technique [Wolf et al.
2007], where the amount of retargeting in both axes constitutes
a fourth parameter. Figure 6 illustrates how the various aesthetic
scores change as a function of one of these four parameters.

The optimization process consists on finding in the 4D parameter
space the parameter vector that maximizes the aesthetic score given
in Eq. 10. In our system, we seek the optimal solution using parti-
cle swarm optimization (PSO) [Kennedy and Eberhart 1995]. PSO
is an evolutionary optimization method starting from many random
initialization seeds, where at each iteration a set of solutions ex-
ist, the scores of each solution is calculated, and the solutions are
updated by shifting them toward the maximal current solution.

5 Results, Validation and Discussion

Figures 7 and 8 show examples of aesthetic composition. Please
refer to the supplementary material and video for additional results.

The visual balance contributes much to the improvement in Fig-
ures 8(a) and (d). The rule of thirds and the diagonal rule are, as
expected, anticorrelated. This is much more so in the output images



(a) (b) (c) (d)

Figure 7: Results of aesthetic composition. (a) The original images; (b) an arbitrary cropping frame of (a); (c) the aesthetic composition
result by our approach; (d) the aesthetic scores of (a),(b),and (c).

than in the input images. Figure 8(c) places a strong linear-element
along the main diagonal. The remapping of Figure 8(b) increases
the region size term of the aesthetic score considerably. Note that
the relative distances among the objects are modified due to the
warping technique in the search, as is very notable in Figure 8(d).

Figure 1 shows another example. There is one prominent horizontal
line and two diagonal lines in the original image, see Figure 1(a).
Optimizing this image leads to the new recomposed image (Figure
1(c)) that obtains a higher aesthetic score than any cropping frame
such as the one shown in Figure 1(b). It is observed that the result
of Figure 1(c) is not just a cropping of Figure 1(a) as it contains
much more cloud than the corresponding cropping frame.

The proposed set of aesthetic rules work in unison in the score func-
tion, see Figure 9. The rule of thirds alone, which dominates pre-
vious work, is not enough for ensuring appealing composition. A
statistical analysis reveals that due to the high weight assigned to
it, the rule of thirds, applied both to points and lines, dominates
the total score in the original image, however at the output image,
the contribution is more evenly spread among the various aesthetic
guidelines. This is the case in both examples in Figure 7. Also, in
the original images, visual balance and the rule of thirds are uncor-
related. In the output images, they become highly correlated. Ex-
amples of the interplay between the various rules can be observed
by examining the bar plots of Figures 1(d) and 7(d), and the graphs
of Figure 6.

To numerically evaluate our score function, we employed a dataset
of 900 casual images arbitrarily collected from international web-
sites in which skilled photographers rank photographs through
them: 300 of the top-ranked images, 300 ranked as good, and 300
casual images were collected. We compute the aesthetic scores
for these photos and their optimized versions. The histograms are
shown in Figure 10. As can be seen, the aesthetic score we devise is
spread differently among the three groups, and all three histograms
move to the region of high scores during the optimization process.

To further study our methods, we have compared it to existing re-
composition methods [Suh et al. 2003] and [Santella et al. 2006].
Instead of using the eye tracking data, we use the same salience map
to run the algorithm of [Santella et al. 2006] as used in the other ap-
proaches. Note that these methods have been designed to maximize

other scores: [Suh et al. 2003] maximizes the crop’s saliency, and
[Santella et al. 2006] maximizes content area and features. Also
note that these methods are confined to simple cropping. As can be
seen in Figure 11, the method of [Santella et al. 2006] does not pro-
duce particularly aesthetic results. The method of [Suh et al. 2003]
produces somewhat simpler images, and aims to create thumbnail
images that are easily recognizable. To prevent a bias in the re-
sults due to selection of the input images, we made sure to include
many casual images and the images of the Berkeley Segmentation
Benchmark [Martin et al. 2001] in our experiments. The results
are provided in the supplementary material. While no method can
recover from a very poor input composition, a good system is ex-
pected to either create a noticeably better composition or to keep
the input composition more or less the same. As shown in the re-
sults, our method is robust in that sense (see the comparison with
[Santella et al. 2006] in the supplementary material).

The crop-and-retarget operator typically results in a zoom-in effect.
For some images, however, the most aesthetic result is obtained by
capturing a larger zoomed-out frame. If the background is simple,
we can use texture synthesis or inpainting techniques to enlarge the
image prior to applying our technique. Figure 12 contains one such
example, where the image was extended using a texture synthesis
technique. Indeed, the most aesthetic version of this example has a
frame larger than the original one.

The same “zoom-out” technique can also be used to objectively
validate our performance. We have collected a test set of profes-
sional photographs and extended their content by means of texture-
synthesis. We then applied our method to the photographs. As can
be seen in Figure 13, the recomposed photographs look similar to
the original photographs.

In all our experiments above, to allow a direct comparison between
images, we fixed the size of the output image to be that of the input
image. Other values for the size and aspect ratio of the output frame
can be specified by the user, see Figure 14.

Figure 15 and 16 show more results produced by our approach. Our
algorithm takes 0.14-0.18 sec to optimize the composition a photo
of size 1024 × 768 if we only allow cropping in the searching. If
we incorporate retargeting operator, it takes 2-14 sec.
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Figure 8: More results generated by our method. Upper row: original; Lower: optimized. The salient regions in (c) and (d) are detected in
a semi-automatic fashion. The numbers indicate the aesthetic scores.

5.1 User study

To further evaluate the performance of our method, we have con-
ducted three user studies. The first compared viewers’ assessment
of the aesthetic appeal of our approach and gaze-based cropping
approach [Santella et al. 2006]. We have generated a set of 30
triples of images; one original, one crop generated by [Santella et al.
2006], and one generated by our approach. Each subject was asked
to select the best looking image out of each triple.

The second user study involved examining whether our optimized
results are competitive to the crops by a professional photographer.
For a set of 30 images, the skilled photographer cropped a “best
looking” crops for each image by hand in Photoshop. The opti-
mized images were generated using our approach. Each subject
was asked to select whether one image looks much better than the
other or whether “the two images look similar”.

The third user study aimed to assess the performance of our method.
This time, the subjects were first taught some basic composition
guidelines as shown in Section 4.1. Once again, 30 pairs of original
image and optimized image were shown to each subject who was
asked which better adheres to the guidelines.

In all the studies, the test images are randomly chosen and the im-
ages in each pair or triple are shown side by side (random order)
on a 19-inch CRT. A total of 56 subjects each participated in the
three sets of experiments, which took about 20 minutes on average.
The subjects are males and females between the ages of 21 and 55.
7 subjects have much photography or art experience, 33 subjects
have a few knowledge of photography, and the others almost know
nothing about photography.

The results of the first two studies are displayed in Table 3 and Ta-
ble 4. In the first study, the subjects show a clear tendency toward
the recomposed images using our approach. It is interesting to note
that art students have shown a clear preference toward our images
by an even larger margin than that of Table 3. In the second study,
it shows that the optimized images generated by our approach are
close to the professional crops. In the third study, the users agree
almost unanimously (92.7%) that the manipulated images better ad-
here to the given composition rules.

Original image Gaze-based method Our method
19.6% 36.3% 44.1%

Table 3: Preference shown in User Study 1.

Hand-cropped image Similar Optimized image
15.2% 81.8% 3.0%

Table 4: Preference shown in User Study 2.

5.2 Limitations

Professional photographs do not necessarily use the predefined aes-
thetic guidelines, and often chose to disobey them. Our technique
follows the guidelines without discretion and does not apply inspi-
ration or creativity.

For some images, the salient regions detection algorithm does not
detect all salient regions. We therefore applied this algorithm in a
semi-automatic fashion and augmented the list of salient regions.

As the images are warped in the retargeting, distortion on the salient
objects might be noticeable in some results.

Moreover, our method, similarly to any method that modifies the
relative locations of image parts, may change relative sizes and pro-
portions within the image such that the image semantics are altered,
as demonstrated in Figure 17.

6 Conclusion and Future Work

We demonstrate that aesthetics can be evaluated computationally
with high enough accuracy to be useful. This opens a new av-
enue for various applications to be enhanced by the ability to au-
tomatically assign aesthetic scores. For example, aesthetic views of
3D models can be identified and appealing logos can be generated
given a set of user requirements.

As a first such application we propose the ability to automatically
recompose images, and show that by optimizing a set of only four
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Figure 11: Comparison with the previous approaches. (a) The original images; (b) the results of our approach; (c) the results of Santella et
al.’s approach [2006]; (d) the results of Suh et al.’s [2003]. Note that line-based information plays a crucial role in photo composition and
ignoring it leads to inferior results.

(a) (b) (c) (d)

Figure 12: For some images, the best aesthetic results are obtained by zooming out. While zooming out is not possible for all images, for
some images texture-synthesis enables such an effect. (a) The original image; (b) Enlarged image by applying a texture synthesis technique;
(c) the result generated by applying our technique on (b); (d) the aesthetic scores of (a),(b), and (c), respectively.

parameters we are able to generate recomposed images that are no-
tably more aesthetic. Future efforts for the recomposing applica-
tion, can focus on improving the aesthetic score. We would like
to explore the possibility of improving the salient-region detection
method by means of computational-learning, and to add color based
considerations to the score enabling the automatic augmentation of
the colors in the image. Aesthetics perception is also influenced by
the structure of the underlying scene, and we would like to explore
adding this and semantic information to the analysis.

Project page. The demo and supplementary materials can be
downloaded at the project page:
http://www.math.zju.edu.cn/ligangliu/CAGD/Projects/Composition
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Figure 15: More results produced by our algorithm. Left: input photos; Right: optimized results.



  

  

    

    

  

  

    

    

    

Figure 16: Optimized results on casual photos produced by our algorithm. Left: input photos; Right: optimized results.


